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Abstract 

 
       In this paper we consider the problem of finding m -hypergeometric solutions of 
anti-difference equations. We extend the greatest factorial factorization (GFF) of a 
polynomial, introduced by Paule (1995), to the m -greatest factorial factorization 
( m GFF). Equipped with the m GFF-concept, we present algebraically motivated 
approach to the problem. This approach requires only “gcd” operations but no 
factorization. Then, we solve the same problem for q -anti-difference equations. 
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 البصرة، العراق
 

 

 الخلاصة
 

نوسع تحليل .  لمعادلات ضد الفروقات-m هذا البحث نتأمل مسالة ايجاد الحلول الهايبرجيومتريةفي                   

 -m  الى تحليل العوامل الاعظم،(1995) المقدم من قبل باول ،لمتعددة الحدود (GFF) العوامل الاعظم

(mGFF). عمليات هذا الاسلوب يتطلب فقط.  نقدم اسلوب جبري للمسالة،   باستخدام مفهوم  gcd 

  .q-ثم نحل نفس المسالة لمعادلات الفروقات. ولايتطلب التحليل الى عوامل
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1. Introduction 
 

Let m  denotes a positive integer, ℕ be the set of natural numbers, K  be the field of 
characteristic zero, )(nK  be the field of rational functions over K , ][nK  be the ring 
of polynomials over K , F  denotes the transcendental extension of K  by the 
indeterminate q , i.e., )(qKF = , E  denotes the shift operator on ][nK , i.e., 

)1())(( += npnEp  for any ][nKp∈ , ε   denotes the q -shift operator on ][nF  and 
)(nF ,  i.e., )())(( qnunu =ε  for any ][nFu ∈  or )(nFu∈ , deg( p ) denotes the 

polynomial degree (in n) of any ][nKp∈  or ][nFp∈ , 0≠p . We define deg 
(0) 1−= . We assume the result of any gcd (greatest common divisor) computation in 

][nK  or ][nF  as being normalized to a monic polynomial p , i.e., the leading 
coefficient of p  being 1. Recall that a non-zero term nt  is called a hypergeometric 
term over K  if there exist a rational function )()( nKnr ∈  such that 

 

).(1 nr
t

t

n

n =+  

 
       Gosper’s algorithm (Goper, 1978) (also see Graham et al., 1989, Koepf, 1998, 
Petkovšek et al., 1996) has been extensively studied and widely used to prove 
hypergeometric identities. Given a hypergeometric term nt , Gosper’s algorithm is a 
procedure to find a hypergeometric term nz  satisfying  

 
                         .1 nnn tzz =−+                                                            (1.1) 

 
if it exists, or confirm the nonexistence of any solution of (1.1). In Paule (1995), Paule 
introduced the GFF-concept. Equipped with the GFF-concept, he presented a new and 
algebraically motivated approach to Gosper’s algorithm. 
 

A non-zero term na  is called an m -hypergeometric over K  if there exist a 
rational function ][)( nKnw ∈  such that 

           ).(nw
a

a

n

mn =+                                                         (1.2) 

 
In Koepf (1995), Koepf extends Gosper’s algorithm to find m -hypergeometric 
solutions nh  of  
                                                    
                                                                         ,nnmn ahh =−+                                                 
(1.3) 
 
where na  is a given m -hypergeometric term. In Petkovšek and Bruno (1993), 
Petkovšek and Bruno described an algorithm to find m -hypergeometric solutions of 
homogeneous linear recurrences with polynomial coefficients. Their algorithm 
reduces to algorithm Hyper (Petkovšek, 1992) when 1=m .  
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A non-zero term kb  is called a q -hypergeometric over F  if there exists a rational 
function )( kqF∈σ  such that  

).(1 k

k

k q
b

b
σ=+               

 
In Paule and Riese (1997), Paule and Riese introduced the q -greatest factorial 
factorization ( q GFF) of polynomials, which is a q -analogue of the GFF-concept. 
Equipped with the q GFF, they presented a new approach to find q -hypergeometric 
solutions kl  of 

 
,1 kkk bll =−+                                                                 (1.4) 

 
where kb  is a given q -hypergeometric term. Paule-Riese’s approach can be viewed as 
an q -analogue of Gosper’s algorithm. 

 
A non-zero term kf  is called a qm -hypergeometric over F  if there exist a 

rational function )( kqF∈ρ  such that  

 )( k

k

mk q
f

f
ρ=+ .          

 
Let us define the dispersion dis ),( bam  of the polynomials ][)(),( nKnbna ∈  to be 

the greatest nonnegative integer k  (if it exists) such that )(na  and )( mknb +  have a 
nontrivial common divisor, i.e., 

 
     dis =),( bam max { ∈k ℕ  deg gcd }.1))(),(( ≥+ mknbna   

 
If k  does not exist then we set dis =),( bam -1. Recall that the pair 〉〈 dc, , ][, nKdc ∈ , 

is called the reduced form of )(nKr ∈  if d
cr = , d  is monic, and gcd 1),( =dc .  

 
       The contents of this paper are as follows: In Section 2, we give the Fundamental 
m GFF Lemma, which is an extension of the Fundamental Lemma given by Paule 
(1995). In Section 3, we extend Paule’s approach to find m -hypergeometric solutions 
of anti-difference equations. In Section 4, we give the Fundamental qm GFF Lemma, 
which is an extension of the Fundamental q GFF Lemma given by Paule and Riese 
(1997). Finally, In Section 5, we extend Paule-Riese’s approach to find qm -
hypergeometric solutions of q -anti-difference equations. 
 
 
 
 
 
 
2. m -Greatest Factorial Factorization 
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In this section we define the m GFF of a polynomial, which is an extension of the 
GFF-concept introduced by Paule. 
 
 
2.1 Basic Definitions 
 
Definition 2.1. For any monic polynomial ][nKp∈  and ∈i ℕ, the i -th m -falling 
factorial i

mp][  of p is defined as 
....][ )1(2 pEpEpEpp mimmi

m
+−−− ⋅⋅⋅⋅=  

For 0=i , we let .1][ 0 =mp   
 
Definition 2.2. We say that 〉〈 sppp ,...,, 21 , ][nKpi ∈ , is an m GFF-form of a monic 
polynomial ][nKp∈  if the following conditions hold: 
 
          ( m GFF1) ,][][][ 2

2
1

1
s
msmm pppp ⋅⋅⋅⋅=  

          ( m GFF2) each ip  is monic and 0>s  implies deg( sp )>0, 
          ( m GFF3) gcd([p i ] i

m , j
m pE )= 1  for ,1 sji ≤≤≤  

          ( m GFF4) gcd([ ip ] i
m , j

jm pE − )= 1  for .1 sji ≤≤≤  
 
       If 〉〈 sppp ,...,, 21  is an m GFF-form of a monic ][nKp∈  we sometimes express 
this fact for short by m GFF( p )= 〉〈 sppp ,...,, 21 . 
 
 
2.2 The Fundamental m GFF Lemma 
 
In this section we give the Fundamental m GFF Lemma, which is an extension of the 
Fundamental Lemma given by Paule. The gcd ),( pEp m  for ][nKp∈  plays a basic 
role in finding m -hypergeometric solutions of anti-difference equation (1.3). 
 
Lemma 2.1. (“Fundamental m GFF Lemma”) Given a monic polynomial ][nKp∈  
with m GFF-form 〉〈 sppp ,...,, 21 . Then 

gcd ),( pEp m = .][][][ 12
3

1
2

−⋅⋅⋅⋅ s
msmm ppp  

 
Proof. Proceeding by induction on s  the case 0=s  is trivial. For ,0>s  
 
gcd ),( pEp m = ⋅−1][ s

msp gcd )).]...[]([,]...[]([ 1
1

1
1

)1(1
1

1
1 s

s
msm

m
s

mss
msm pppEpEpp ⋅⋅ −

−
+−−

−  
                    = ⋅−1][ s

msp gcd )).]...[]([,]...[]([ 1
1

1
1

1
1

1
1

−
−

−
−

s
msm

ms
msm ppEpp  

 
The first equality is obvious, the second is a consequence of m GFF3 and m GFF4 
because for si <  we have  
 

gcd =),]([ s
mi

mi pEp gcd )][,( )1( i
mi

m
s

ms pEpE +− = mE gcd .1)][,( =− i
mis

sm ppE  
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together with gcd ),( )1(

s
m

s
ms pEpE +−  gcd .1),]([ =s

ms
ms pEp  The rest of the proof 

follows from applying the induction hypothesis.                                                                                           
□ 
 
       In the above lemma we see that from the m GFF-form of a polynomial p  we can 
find the m GFF-form of gcd ),( pEp m . 
 
 
 
3. m -Hypergeometric Solutions of Anti-Difference 
     Equations 
 
In this section we extend Paule approach to find m -hypergeometric solutions nh  of 
equation (1.3). Given an m -hypergeometric term na  and suppose that there exists an 
m -hypergeometric term nh  satisfying equation (1.3), then by using (1.3) we find  
 

.
1

1

−
=

−
=

++

n

mnnmn

n

n

n

h
hhh

h
a
h

 

Let 
n

n
a

hny =)( . It follows that )(ny  is a rational function of n . Let 〉〈 ba,  be the 

reduced form of 
n

mn
a

anw +=)( . Substituting nany )(  for nh  in (1.3) to obtain 

 
).()()()()( nbnynbmnyna =−+                                              (3.1) 

 
This means, the problem of finding m -hypergeometric solution of (1.3) is equivalent 
to finding a rational solution )(ny  of (3.1). If a solution )()( nKny ∈  of (3.1) with the 
reduced form 〉〈 vu,  exists, assume we know v  or a multiple ][nKV ∈  of v . Then 
equation (3.1) can be written as 

 
),()()()()()()()()( mnVnVnbnUmnVnbmnUnVna +⋅⋅=⋅+⋅−+⋅⋅                 

(3.2) 
  

where )(
)()()( nv

nVnunU ⋅=  is unknown polynomial. Hence the problem reduces to 

finding a polynomial solution ][nKU ∈  of equation (3.2). To solve (3.2) we try to 
find a suitable denominator polynomial V  and then U  can be computed as a 
polynomial solution of (3.2). Let 

 

),gcd(
)()(
vEv

invnv mi
+

=    for { }mi ,0∈ . 

 
Then (3.1) is equivalent to 
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                 ).,gcd()()()()()()()()()( 00 vEvnvnvnbnunvnbmnunvna m

mm ⋅⋅⋅=⋅⋅−+⋅⋅         
       (3.3) 
 
From this equation we immediately get that )(0 nv  )(nb  and that )(nvm )(na . Let 
m GFF =)(v 〉〈 sppp ,...,, 21 , by using the m GFF-concept and the Fundamental 
m GFF Lemma we get that 
 

s
msm

m pEpEp
vEv

vv )1(
210 ....

),gcd(
+−−==  ),(nb                                (3.4)      

                                   

 s
mmm

m

m

m pEpEpE
vEv

vEv ....
),gcd( 21==  ),(na                                  (3.5) 

This observation gives rise to a simple algorithm for computing a multiple  
s
msmm PPPV ][][][ 2

2
1

1 ⋅⋅⋅⋅=  of v .  
 

● Straightforward conclusion 
 

ip  ( )bEaE mim )1(,gcd −−      ∀  { }si ,...,1∈ . 
 

If ),gcd( )1( bEaEP mim
i

−−=  then obviously ip  iP . Thus, we could take 
 

 m GFF =)(V 〉〈 NPPP ,...,, 21 , 
 

where =N dis =),( bam max { ∈i ℕ  deg gcd }.1),( ≥bEa im  If N  is not 
defined then we set 1=V .  
 
 

● Refined conclusions 
1p  ( )baE m ,gcd − . 

 
If ),gcd(1 baEP m−=  then 1p  1P  and  

2p  gcd ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛−

11

,
)( P

bE
PE

aE m
m

m . 

          If =2P  gcd ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛−

11

,
)( P

bE
PE

aE m
m

m , then 12p  2P  and so on until we arrive 

at a NP  and   we may again take m GFF =)(V 〉〈 NPPP ,...,, 21 .                                                             
□ 

 
       The algorithm that we have just derived for (1.3) can be written, by using the 
“redefined conclusions”, as follows: 
Algorithm 3.1. 
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INPUT    : )()( nKnw ∈  such that )(nwa
a

n

mn =+  for all ∈n ℕ. 

OUTPUT: an m -hypergeometric solution nh  of (1.3) if it exists, otherwise “no m -
hypergeomet-ric solution of (1.3) exists”. 
 
(1) Decompose )(nw  into the reduced form 〉〈 ba, . 

 
(2) Compute =N dis =),( bam max { ∈i ℕ  deg gcd }.1),( ≥bEa im  

 
         If 0>N  then compute for j  from 1 to N  
 
                        ),gcd()( )1( bEaEnP mjm

j
−−=  

                        
)(nPE

aa
j

m=  

                        
)()1( nPE

bb
j

mj−−=  

                   m GFF =)(V 〉〈 NPPP ,...,, 21  
         otherwise .1=V  
    

  (3) If equation (3.2) can be solved for ][nKU ∈  then return nn a
nV
nUh
)(
)(

= , otherwise 

return “no m -hypergeometric solution of (1.3) exists”.                                         
                                      □ 

 
 
4. q - m -Greatest Factorial Factorization 
 
In this section we define the “ q - m -Greatest Factorial Factorization” ( qm GFF) of a 
polynomial which is an extension of the q GFF-concept introduced by Paule and 
Riese. Also, it is a q -analogue of the m GFF-concept, defined with respect to the q -
shift operator ε  instead of the shift operator E  as for m GFF. In Sections 4 and 5, we 
will use n  as an abbreviation for kq . 
        

Let us define the dispersion dis ))(),(( nbnam  of the q -monic polynomials 
][)(),( nFnbna ∈  is the greatest nonnegative integer i  (if it exists) such that )(na  and 

)( nqb mi  have a nontrivial common divisor, i.e., 
 

dis =),( bam max { ∈i ℕ  deg gcd }.1))(),(( ≥nqbna mi  
 

A polynomial ][nFp∈  is said to be q -monic if .1)0( =p  Any polynomial 
][nFp∈  has a unique factorization, the q -monic decomposition, in the form  

 
pnzp ˆ⋅⋅= α , 
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where Fz∈ , ∈α ℕ, and ][ˆ nFp∈  q -monic. We will write qgcd  instead of “gcd”, 
indicating that the qgcd  of two q -monic polynomials is understood to be q -monic. 
 

More generally, if 111 ˆ1 pnzp ⋅⋅= α  and 222 ˆ2 pnzp ⋅⋅= α  are q -monic 
decompositions of ][, 21 nFpp ∈ , we define  

 
).ˆ,ˆ(gcd),gcd(),(gcd 2121

21 ppnnpp qq ⋅= αα  
 
 
4.1 Basic Definitions 
 
Definition 4.1. For any q -monic polynomial ][nFp∈  and ∈i ℕ, the i -th m -falling 
q -factorial i

mq
p][  of p  is defined as 

....][ )1(2 ppppp mimmi
mq

+−−− ⋅⋅⋅⋅= εεε  

For 0=i , we let 0][
qmp  =1.  

 
Definition 4.2. We say that 〉〈 sppp ,...,, 21 , ][nFpi ∈ , is an qm GFF-form of a q -
monic polynomial ][nFp∈  if the following conditions hold: 
 

( qm GFF1) ,][][][ 2
2

1
1

s
msmm qqq

pppp ⋅⋅⋅⋅=  

( qm GFF2) each ip  is q -monic and 0>s  implies deg( sp )>0, 
( qm GFF3) gcd q ([p i ] i

mq
, j

m pε )= 1  for ,1 sji ≤≤≤  

( qm GFF4) gcd q ([ ip ] i
mq

, j
jm p−ε )= 1  for .1 sji ≤≤≤  

 
       If 〉〈 sppp ,...,, 21  is the qm GFF-form of a q -monic ][nFp∈  we also denote this 
fact for short by qm GFF )( p = 〉〈 sppp ,...,, 21 . 
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4.2 The Fundamental qm GFF Lemma 
 
In this section we give the Fundamental qm GFF Lemma which is an extension of the 
Fundamental q GFF Lemma given by Paule and Riese. In finding m -hypergeometric 
solutions of anti-difference equations (i.e., 1=q ) the gcd ),( pEp m  for ][nKp∈  
plays a basic role. The same is true for qm -hypergeometric solutions of q -anti-
difference equations with respect to the q -shift operator ε  instead of E . 
 
Lemma 4.1. (“Fundamental qm GFF Lemma”) Given a q -monic polynomial 

][nFp∈  with qm GFF-form 〉〈 sppp ,...,, 21 . Then 
 

      gcd q ),( pp mε = .][][][ 12
3

1
2

−⋅⋅⋅⋅ s
msmm qqq

ppp  
 
Proof. Proceeding by induction on s  the case 0=s  is trivial. For ,0>s  
 
gcd q ),( pp mε = ⋅−1][ s

ms q
p gcd q )).]...[]([,]...[]([ 1

1
1

1
)1(1

1
1

1 s
s
msm

m
s

mss
msm pppppp

qqqq
⋅⋅ −

−
+−−

− εε  

= ⋅−1][ s
ms q

p gcd q )).]...[]([,]...[]([ 1
1

1
1

1
1

1
1

−
−

−
−

s
msm

ms
msm qqqq

pppp ε  
 

The first equality is obvious, the second is a consequence of qm GFF3 and qm GFF4 
because for si <  we have 
 

  gcd q =),]([ s
mi

mi pp
q
ε gcd q )][,( )1( i

mi
m

s
ms

q
pp εε +− = mε gcd q .1)][,( =− i

mis
sm

q
ppε  

 
together with gcd q ),( )1(

s
m

s
ms pp εε +−  gcd q .1),]([ =s

ms
ms pp

q
ε  The rest of the proof 

follows from applying the induction hypothesis.                                                                                            
□ 
 
       In the above lemma we see that from the qm GFF-form of a q -monic polynomial 
p  one directly can extract the qm GFF-form of gcd q ),( pp mε . 

 
 
5. qm -Hypergeometric Solutions of q -Anti-Difference     Equations 
 
In this section we extend Paule-Riese's approach to find qm -hypergeometric 
solutions kg  of the q -anti-difference equation 

                                         ,kkmk fgg =−+                                                             (5.1) 
 
where kf  is a given a qm -hypergeometric term. Given a qm -hypergeometric term 

kf  and suppose that there exists a qm -hypergeometric term kf  satisfying equation 
(5.1), then by using (5.1) we find 
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     .
1

1

−
=

−
=

++

k

mkkmk

k

k

k

g
ggg

g
f
g

  

Let 
k

k
f

g=τ . It follows that τ  is a rational function over F . Substituting kf⋅τ  for 

kg  in (5.1) to obtain 
,1=−⋅ ττερ m                                                             (5.2) 

 

where )(nFf
f

k

mk ∈= +ρ  is a rational function. Let b
anz ⋅⋅= αρ  with Fz∈ , α  

integer, and ][, nFba ∈  relatively prime and q -monic. For any integer α  we define 
)0,max(αα =+  and )0,max( αα −=− , thus equation (5.2) is equivalent to 

 
.bnbnanz m ⋅=⋅⋅−⋅⋅⋅ −−+ ααα ττε                                            (5.3)     

 
This means the problem of finding a qm -hypergeometric solutions of (5.1) is 

equivalent to finding rational solutions τ  of (5.3). Let v
u=τ  where ][, nFvu ∈  be 

two unknown relatively prime polynomials with vnv ˆ⋅= β  the q -monic 
decomposition of v . If a solution τ  of (5.3) exists, assume we know v  or a multiple 

][nFV ∈  of v . Then equation (5.3) can be written as 
 

.VVbnUVbnUVanz mmm εεε ααα ⋅⋅⋅=⋅⋅⋅−⋅⋅⋅⋅ −−+                             (5.4) 
 
where )(

)()()( nv
nVnunU ⋅=  is unknown polynomial. Hence the problem reduces to 

finding a polynomial solution ][nFU ∈  of equation (5.4). To solve (5.4) we try to 
find a suitable denominator polynomial V  and then U  can be computed as a 
polynomial solution of (5.4). Let 

 

),(gcd vv
vv m

q

i

i ε
ε

=    for { }mi ,0∈ . 

 
Then (5.3) is equivalent to 

 
).,(gcd00 vvvvbnuvbnuvanz m

qmm
m εε ααα ⋅⋅⋅⋅=⋅⋅⋅−⋅⋅⋅ −−+                       (5.5)          

 
From this equation we immediately get that 0v b  and that mv a . Let 
qm GFF =)ˆ(v 〉〈 sppp ,...,, 21 , by using the qm GFF-concept and the Fundamental 
qm GFF Lemma we get that 
 

   s
msm

m
q

m
q

ppp
vv

v
vv

vv )1(
210 ....

)ˆ,ˆ(gcd
ˆ

),(gcd
+−−=== εε

εε
 ,b                           (5.6)  
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          s
mmmm

m
q

mm

m
q

m

m pppq
vv

vq
vv

vv εεε
ε
ε

ε
ε β

β

....
)ˆ,ˆ(gcd

ˆ
),(gcd 21⋅=

⋅
== ,a                       

(5.7) 
 
This observation give rise to a simple algorithm for computing a multiple  

s
msmm qqq

PPPV ][][][ˆ 2
2

1
1 ⋅⋅⋅⋅=  of v̂ . 

 
● Straightforward conclusion 
 

ip  ( )ba mim
q

)1(,gcd −− εε      ∀  { }si ,...,1∈ . 
 

            If ),(gcd )1( baP mim
qi

−−= εε  then obviously ip  iP . Thus, we could take 
 

N
mNmm qqq

PPPV ][][][ˆ 2
2

1
1 ⋅⋅⋅⋅= , 

 
where =N dis =),( bam max { ∈i ℕ  deg gcd q }.1),( ≥ba imε  If N  is not 

defined then we set 1ˆ =V .  
 

●  Refined conclusions 
 

1p  ( )bam
q ,gcd −ε . 
 

            if we take ),(gcd1 baP m
q

−= ε  then 1p  1P  and 
  

2p  gcd q ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛−

11

,
)( P

b
P

a m
m

m ε
ε

ε . 

 

            If we take =2P  gcd q ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛−

11

,
)( P

b
P

a m
m

m ε
ε

ε , then 2p  2P  and so on until 

we arrive at a NP  and we may again take N
mNmm qqq

PPPV ][][][ˆ 2
2

1
1 ⋅⋅⋅⋅= .                      

□ 
        
With V̂  in hand, all what is left for solving (5.4), and thus finding the a qm -
hypergeometric solution of equation (5.1), is to determine an appropriate value of γ  
such that 

 
)(ˆ)( nvnnv ⋅= β  ).(ˆ)( nVnnV ⋅= γ  

 
For that we will follow the approach given by Paule and Riese (1997). Consider 
equation (5.5): (i) Assume that 0≠α  then either 0≠−α  or .0≠+α  In the first case 
we have 0=+α  and −αn  u , hence β  must be zero because of .1),(gcd =vuq  This 
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means we can choose .0=γ  In the second case we have 0=−α  and ),min( βα+n  u , 

because of vvnvv m
q

m
q ˆ,ˆ(gcd),(gcd εε β ⋅= ) . Again β  must be zero, and again we 

can choose .0=γ  (ii) Assume that .0=α  In this case equation (5.5) evaluated at 
0=n  turns into 

 
     ,)0()( ,0 β

ββ δ⋅=− mm quqz   
 

where βδ ,0  denotes the Kronecker symbol. This means if 0>β  we obtain, observing 

that 0)0( ≠u  in this case, as a condition for β  that mqz β= . Hence in case 0=α , we 

choose )(log1 z
m q⋅=γ  if z  is a positive integer power of q , or 0=γ  otherwise. 

 
The algorithm that we have just derived for (5.1) can be written, by using the 

“redefined conclusions”, as follows: 
 
 
 
 
 
 
 
 

Algorithm 5.1.  

INPUT    : )(nF∈ρ  such that )( k

k

mk qf
f ρ=+  for all ∈n ℕ.  

OUTPUT: a qm -hypergeometric solution kg  of  (5.1) if it exists, otherwise “no qm -
hypergeometric solution kg  of (5.1) exists”. 

 
  (1) Decompose ρ  into the form b

anz ⋅⋅= αρ  such that Fz∈ , α  integer, 

        and ][, nFba ∈  relatively prime and q -monic. 
 
  (2) Compute =N dis m =),( ba max { ∈i ℕ  deg gcd q }.1),( ≥ba imε  
                 
        If 0>N  then compute for j  from 1 to N  
 
                       ),(gcd)( )1( banP mjm

qj
−−= εε  

                        
)(nP

aa
j

mε
=  

                        
)()1( nP

bb
j

mj−−=
ε

  

 
                N

mNmm qqq
PPPV ][][][ˆ 2

2
1

1 ⋅⋅⋅⋅=   
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         otherwise .1ˆ =V  
       
(3) Determine the value of γ  as follows: 

 

     
⎪⎩

⎪
⎨
⎧ =⋅

=
.0

,0)(log1

otherwise

qofpowerintegerpositiveazandifz
m q α

γ  

   
  (4) Take VnV ˆ⋅= γ . If equation (5.4) can be solved for ][nFU ∈  then return 

,
)(
)(

kk f
nV
nUg =  otherwise return “no qm -hypergeometric solution of (5.1) 

exists”.                                          □ 
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