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Abstract

In this paper we consider the problem of finding m -hypergeometric solutions of
anti-difference equations. We extend the greatest factorial factorization (GFF) of a
polynomial, introduced by Paule (1995), to the m -greatest factorial factorization
( m GFF). Equipped with the m GFF-concept, we present algebraically motivated
approach to the problem. This approach requires only “gcd” operations but no
factorization. Then, we solve the same problem for g -anti-difference equations.

Keywords : Gosper’s algorithm, m -hypergeometric solution, m-greatest factorial
factorization, ¢ -Gosper algorithm, gm -hypergeometric solution, gm -greatest

factorial factorization.
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1. Introduction

Let m denotes a positive integer, N be the set of natural numbers, K be the field of
characteristic zero, K(n) be the field of rational functions over K, K[n] be the ring

of polynomials over K, F denotes the transcendental extension of K by the
indeterminate q , i.e., F =K(q), E denotes the shift operator on K|[n], i.e.,

(Ep)(n) = p(n+1) for any p € K[n], & denotes the q-shift operator on F[n] and
F(n), 1i.e., (eu)(n)=u(qn) for any ue F[n] or ue F(n), deg( p ) denotes the
polynomial degree (in n) of any pe K[n] or pe F[n], p#0. We define deg

(0)=—-1. We assume the result of any gcd (greatest common divisor) computation in
K[n] or F[n] as being normalized to a monic polynomial p , i.e., the leading

coefficient of p being 1. Recall that a non-zero term t is called a hypergeometric
term over K if there exist a rational function r(n) € K(n) such that

tn+l
—==r(n).
" ()

n

Gosper’s algorithm (Goper, 1978) (also see Graham et al., 1989, Koepf, 1998,
Petkovsek et al., 1996) has been extensively studied and widely used to prove
hypergeometric identities. Given a hypergeometric term t,, Gosper’s algorithm is a

procedure to find a hypergeometric term z satisfying
Zna — 1, :tn' (11)

if it exists, or confirm the nonexistence of any solution of (1.1). In Paule (1995), Paule
introduced the GFF-concept. Equipped with the GFF-concept, he presented a new and
algebraically motivated approach to Gosper’s algorithm.

A non-zero term a, is called an m -hypergeometric over K if there exist a
rational function w(n) € K[n] such that

Buen _ yy(m), (1.2)
a

n

In Koepf (1995), Koepf extends Gosper’s algorithm to find m -hypergeometric
solutions h, of

(1.3)

where a, is a given m -hypergeometric term. In PetkovSek and Bruno (1993),

Petkovsek and Bruno described an algorithm to find m -hypergeometric solutions of
homogeneous linear recurrences with polynomial coefficients. Their algorithm
reduces to algorithm Hyper (Petkovsek, 1992) when m=1.
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A non-zero term b, is called a q-hypergeometric over F if there exists a rational
function o € F(q") such that
bk+l k
—=0(q").
0 @)

k

In Paule and Riese (1997), Paule and Riese introduced the Q -greatest factorial
factorization (q GFF) of polynomials, which is a q-analogue of the GFF-concept.
Equipped with the q GFF, they presented a new approach to find q-hypergeometric
solutions |, of

Ik+1 _Ik :bkﬂ (1.4)

where b, is a given (-hypergeometric term. Paule-Riese’s approach can be viewed as
an ( -analogue of Gosper’s algorithm.

A non-zero term f, is called a gm -hypergeometric over F if there exist a

rational function p € F(q*) such that

f
— =P
k

Let us define the dispersion dis ,(a,b) of the polynomials a(n),b(n) € K[n] to be
the greatest nonnegative integer k (if it exists) such that a(n) and b(n+mk) have a
nontrivial common divisor, i.€.,

dis, (a,b) =max {k eN | deg ged (a(n),b(n+mk)) >1}.

If k does not exist then we set dis ,(a,b) =-1. Recall that the pair {(c,d), c,d € K[n],
is called the reduced form of r € K(n) if r = V , d is monic, and ged(c,d) =1.

The contents of this paper are as follows: In Section 2, we give the Fundamental
m GFF Lemma, which is an extension of the Fundamental Lemma given by Paule
(1995). In Section 3, we extend Paule’s approach to find m -hypergeometric solutions

of anti-difference equations. In Section 4, we give the Fundamental gm GFF Lemma,
which is an extension of the Fundamental g GFF Lemma given by Paule and Riese
(1997). Finally, In Section 5, we extend Paule-Riese’s approach to find gm -
hypergeometric solutions of ( -anti-difference equations.

2. m-Greatest Factorial Factorization
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In this section we define the m GFF of a polynomial, which is an extension of the
GFF-concept introduced by Paule.

2.1 Basic Definitions

Definition 2.1. For any monic polynomial p € K[n] and i e N, the i-th m-falling
factorial [p]., of pis defined as

[Pl =p-E"p-E™p-.. . ET"p.
Fori=0,welet[p]} =1.

Definition 2.2. We say that (p,, p,,...., P;), P; € K[n], is an m GFF-form of a monic
polynomial p e K[n] if the following conditions hold:

(MGFF1) p=[p 1, [P, 10 [P ]5
(m GFF2) each p; is monic and s> 0 implies deg( p,)>0,

(MGFF3) ged([p; 1, E"p;)=1 for 1<i< j<s,
(M GFF4) ged([ p; 15, E7™p;)=1 for 1<i< j<s.

If (p,, P,,--., Py IS @n mGFF-form of a monic p € K[n] we sometimes express
this fact for short by m GFF( p)=({p,, P,,---» P, ) -

2.2 The Fundamental m GFF Lemma

In this section we give the Fundamental m GFF Lemma, which is an extension of the
Fundamental Lemma given by Paule. The ged(p,E™p) for p € K[n] plays a basic
role in finding M -hypergeometric solutions of anti-difference equation (1.3).

Lemma 2.1. (“Fundamental m GFF Lemma”) Given a monic polynomial p € K[n]
with m GFF-form (p,, p,,..., ;). Then

ged (P, E"p)=[p, 11 -[P; 15 [P 15"

Proof. Proceeding by induction on S the case S =0 is trivial. For s > 0,

ng(p’ E" p):[ps]fn;l ng([ pl]%n[ ps—l:lfn;1 (ECET Ps, Em([ pl]%n[ ps—l]f{1 : ps))
=[p. 15 -ged ([P [P I E™ ([P T [ Ps 10 )

The first equality is obvious, the second is a consequence of m GFF3 and m GFF4
because for i <s we have

ged([p;1n,E"P,) =ged (E " p,, E"[p;1n) =E"ged (E™" p,.[p;]n) = 1.
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together with ged (E™**"" p,,E™p,) | ged ([p, 15, E" p,) = 1. The rest of the proof

follows from applying the induction hypothesis.
m

In the above lemma we see that from the m GFF-form of a polynomial p we can
find the m GFF-form of gcd(p,E™ p).

3. m-Hypergeometric Solutions of Anti-Difference
Equations

In this section we extend Paule approach to find m-hypergeometric solutions h, of
equation (1.3). Given an m-hypergeometric term a, and suppose that there exists an

m -hypergeometric term h, satisfying equation (1.3), then by using (1.3) we find

Let y(n) = % . It follows that y(n) is a rational function of n. Let (a,b) be the

reduced form of w(n) = Anim Q- Substituting y(n)a, for h, in (1.3) to obtain

n

a(n)y(n+m)—=b(n)y(n) =b(n). 3.1

This means, the problem of finding m -hypergeometric solution of (1.3) is equivalent
to finding a rational solution y(n) of (3.1). If a solution y(n) € K(n) of (3.1) with the

reduced form (u,v) exists, assume we know Vv or a multiple V € K[n] of v. Then
equation (3.1) can be written as

an)-v(n)-Um+m)—b(n)-V(n+m)-U(n)=b(n)-V(n)-V(n+m),
(3.2)

V()

where U (n) =u(n)- v(n) is unknown polynomial. Hence the problem reduces to

finding a polynomial solution U € K[n] of equation (3.2). To solve (3.2) we try to

find a suitable denominator polynomial V and then U can be computed as a
polynomial solution of (3.2). Let

v,(n) = v(n+i)

=" foriefo,m}.
ged(v,E™v)

Then (3.1) is equivalent to
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a(n)-v,(n)-u(n+m)—b(n)-v,(n)-u(n)=b(n)-v,(n)-v,(n)-ged(v, E™v).
(3.3)

From this equation we immediately get that v,(n) | b(n) and that v (n) | a(n). Let
m GFF (v) = {(p,, P,,.., Ps) , by using the m GFF-concept and the Fundamental
m GFF Lemma we get that

\'
V=——=p.EMp, ECSD b(n), 3.4
"= edr.Emyy - PEP p, | b(n) (3.4)
Emv m m m
E"p,.E"p,...E"p, | a(n), (3.5)

V, =———mMm— =
" ged(v,E™V)
This observation gives rise to a simple algorithm for computing a multiple
V =[P, [PI5 [Py of v.

e Straightforward conclusion

p, | gcd(E"a,EC™) ¥ ie{l...s).
If P, = gcd(E "a,E“""b) then obviously p; | P. Thus, we could take

mGFF (V)= (P,P,,....P,),

where N =dis  (a,b)=max {ie N | deg ged (@, E™b)>1}. If N is not
defined then we set V =1.

e Refined conclusions
P, | gcd(E’ma,b).

If P, = gcd(E™a,b) then p, | P, and

“m a m E

If P, = ged Em( ma j,Em(Bj , then p,, | P, and so on until we arrive
E"(P) P,

ata Py and we may again take mMGFF (V)= (R,P,,...,Py).
m

The algorithm that we have just derived for (1.3) can be written, by using the
“redefined conclusions”, as follows:
Algorithm 3.1.
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INPUT : w(n) e K(n) such that an+% =w(n) forall neN.

OUTPUT: an m-hypergeometric solution h, of (1.3) if it exists, otherwise “no m -
hypergeomet-ric solution of (1.3) exists”.

(1) Decompose w(n) into the reduced form (a,b) .
(2) Compute N =dis, (a,b) =max {ieN | deg ged(a,E™b) >1}.
If N >0 then compute for j from 1 to N

P,(n)= ged(E™ma, EV"™b)
a

a=———

E™P;(n)
b
E-UU™P, ()

mGFF V)= (P,P,,...Py)

otherwise V =1.

(3) If equation (3.2) can be solved for U e K[n] then return h, = wan, otherwise
n

return “no m -hypergeometric solution of (1.3) exists”.
O

4. q-m-Greatest Factorial Factorization

In this section we define the “q-m-Greatest Factorial Factorization” (gm GFF) of a
polynomial which is an extension of the q GFF-concept introduced by Paule and
Riese. Also, it is a g -analogue of the m GFF-concept, defined with respect to the q -
shift operator ¢ instead of the shift operator E as for m GFF. In Sections 4 and 5, we
will use N as an abbreviation for q.

Let us define the dispersion dis ,(a(n),b(n)) of the g -monic polynomials
a(n),b(n) e F[n] is the greatest nonnegative integer i (if it exists) such that a(n) and
b(q™n) have a nontrivial common divisor, i.c.,

dis ,(a,b) =max {ieN | deg gcd (a(n),b(q™n)) >1}.

A polynomial pe F[n] is said to be g -monic if p(0)=1. Any polynomial
p € F[n] has a unique factorization, the g-monic decomposition, in the form

p=z:n"-p,
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where ze F, a €N, and p e F[n] gq-monic. We will write ged, instead of “ged”,

indicating that the ged, of two g-monic polynomials is understood to be ¢ -monic.

More generally, if p,=z,-n“-p, and p,=2,-n"-P, are ( -monic
decompositions of p,, p, € F[n], we define

ged, (py, p,) =ged(n™,n®)-ged, (B, P,)-

4.1 Basic Definitions

Definition 4.1. For any q-monic polynomial p € F[n] and i e N, the i-th m-falling
q -factorial [p]iq of p is defined as
[PIn, = P& "™ p e,

For i=0, we let [p]?nq =I.

Definition 4.2. We say that (p,, p,,.... Py, P; € F[n], is an gm GFF-form of a q-
monic polynomial p € F[n] if the following conditions hold:

(am GFF1) p=[p 1, -[P.15, [Py, »
(gm GFF2) each p; is g-monic and s >0 implies deg( p, )>0,
(9m GFF3) ged, ([p; 11, » €"P;)=1 for 1<i< j<s,

9
Mq

(qm GFF4) ged ([ p; 1y, > ¢ "pj)=1 for 1<i<j<s.

If (p,,P,,..., P;) is the gm GFF-form of a g-monic p € F[n] we also denote this
fact for short by qm GFF (p)=(p,, P,..-, P) -
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4.2 The Fundamental gm GFF Lemma

In this section we give the Fundamental gm GFF Lemma which is an extension of the
Fundamental g GFF Lemma given by Paule and Riese. In finding m -hypergeometric

solutions of anti-difference equations (i.e., q=1) the ged (p,E™p) for p e K[n]
plays a basic role. The same is true for gm -hypergeometric solutions of q -anti-
difference equations with respect to the q-shift operator ¢ instead of E .

Lemma 4.1. (“Fundamental gm GFF Lemma”) Given a g -monic polynomial
p € F[n] with gm GFF-form (p,, p,,..., P;) . Then

ged, (pe"P)=[0, T, [P: 5, [P 15
Proof. Proceeding by induction on S the case S=0 is trivial. For s >0,

ng (p,[;‘ p) [ s]m ng ([pl] [ps—l]s;l'g(isﬂ)mpsagm([pl]%nq"'[ps—l]?n?‘ps))'
=[P, 15, -gedq ([P T, [Pt v, €™ (P T, [P T )

The first equality is obvious, the second is a consequence of gm GFF3 and gm GFF4
because for i < S we have

ged, ([P T -6"Ps) =ged, (67" pg,e" [P, ) =¢"ged, (67" P[P I, ) = 1.

(=s+1)m

together with ged , (& P.,€" Ps) | ged, ([ ps]fnq ,&" p,) =1. The rest of the proof

follows from applying the induction hypothesis.
O

In the above lemma we see that from the gm GFF-form of a g-monic polynomial
p one directly can extract the gqm GFF-form of ged, (p,&™ p).

5. gm -Hypergeometric Solutions of q-Anti-Difference Equations

In this section we extend Paule-Riese's approach to find gm -hypergeometric
solutions g, of the -anti-difference equation

Jem — 9 = T (5.1)

where f, is a given a gm -hypergeometric term. Given a gm -hypergeometric term
f, and suppose that there exists a qm -hypergeometric term f, satisfying equation
(5.1), then by using (5.1) we find
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- Ovim — Yk * Yiem _1.
Oy

Let 7 = g% . It follows that 7 is a rational function over F . Substituting 7 - f, for
k

9 9« 1
fi

g, in (5.1) to obtain
p-e"r—r=1, (5.2)

where p = fk*% € F(n) is a rational function. Let p=12z-n“ -% with zeF, a
k

integer, and a,b € F[n] relatively prime and q-monic. For any integer & we define
a, =max(a,0) and o = max(-«,0), thus equation (5.2) is equivalent to

z-n“-a-&"r—n“-b-r=n"-h. (5.3)

This means the problem of finding a gm -hypergeometric solutions of (5.1) is
equivalent to finding rational solutions 7z of (5.3). Let 7 = A where u,v € F[n] be

two unknown relatively prime polynomials with v=n”.¥ the q -monic

decomposition of V. If a solution 7 of (5.3) exists, assume we know V or a multiple
V e F[n] of v. Then equation (5.3) can be written as

z.n“.a-V-g"U-n“-b-g"V.-U=n"-b-V-g"V. (5:4)

V(n)

where U (n) =u(n)- v(n) is unknown polynomial. Hence the problem reduces to

finding a polynomial solution U € F[n] of equation (5.4). To solve (5.4) we try to

find a suitable denominator polynomial V and then U can be computed as a
polynomial solution of (5.4). Let

i:—gv — for i € {0,m}.
ged, (v,e7v)
Then (5.3) is equivalent to
z-n“a-v,-e"u-n“-b-v -u=n“-b-v,-v, -ged,(v,e"V). (5.5)

From this equation we immediately get that v, | b and that v, | a . Let

gm GFF (V) = (p,, P5»---» Ps) » by using the gm GFF-concept and the Fundamental
gm GFF Lemma we get that

Y

° ged, (v,e™v)  ged, (V,&MV)

(=s+1)m

p.e™p,..£ p, | b. (5.6)
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ma

T A qmv g™
" ged, (v,e"v)  ged, (9,£™V)

q" -&"p,.e"p,..e"p, | a,
(5.7)

This observation give rise to a simple algorithm for computing a multiple
V=[RI, -[PI - [PI, of V.

e Straightforward conclusion

p; | gcdq(g'ma,g(i'”mb) \Y ie{l,...,s}.
If P, = ged, (¢ "a,&"""b) then obviously p; | P.. Thus, we could take

V =[RIy, [PTo, - [Pu]n,

Mq

where N =dis ,(a,b)=max {ieN | deg ged (a,e™b)>1}. If N is not
defined then we set V =1.

e Refined conclusions
P, | gcdq(g_ma,b).

if we take P, = ged, (¢ "a,b) then p, | P and

“m a m E
P, |gcdq (‘9 (&‘m(Pl)]’g PIJJ'

If we take P, = ged | &™" ma & b , then p, | P, and so on until
¢"(P) P

1
we arrive at a P, and we may again take V =[P\ -[P,]3 -

O

With V in hand, all what is left for solving (5.4), and thus finding the a gm -
hypergeometric solution of equation (5.1), is to determine an appropriate value of y
such that

v(n)=n”-¥(n) | V(n)=n"-V(n).

For that we will follow the approach given by Paule and Riese (1997). Consider
equation (5.5): (i) Assume thata # 0 then either & # 0 or «, # 0. In the first case

we have o, =0 and n* | u, hence B must be zero because of ged, (u,v) =1. This
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means we can choose y = 0. In the second case we have a_ =0 and n™™“-? | u,
ecause of gc ,e™V)=n"-ged, (V,e"V) . Again B must be zero, and again we
b f ged, (v,e™V)=n” -ged (V,&™0) . Ag tb d ag

can choose y =0. (ii)) Assume that & =0. In this case equation (5.5) evaluated at
n =0 turns into

(z-9"™Mu0)=9" -5, ,,

where &, , denotes the Kronecker symbol. This means if >0 we obtain, observing

that u(0) = 0 in this case, as a condition for B that z = q”". Hence in case o =0, we
1 o e .

choose y = . log,(2) if z is a positive integer power of g, or y =0 otherwise.

The algorithm that we have just derived for (5.1) can be written, by using the
“redefined conclusions”, as follows:

Algorithm 5.1.

INPUT : peF(n) suchthat '

o/ = p(q*) forall neN.
k

OUTPUT: a gm -hypergeometric solution g, of (5.1) if it exists, otherwise “no gm -
hypergeometric solution g, of (5.1) exists”.

(1) Decompose p into the form p=z-n“ A suchthat z e F, « integer,

and a,b € F[n] relatively prime and g-monic.
(2) Compute N =disp (a,b) =max {ieN | deg gedq (a,&™b)>1}.
If N >0 then compute for j from1to N

P,(n) = ged, (¢ "a,&""b)
a

a= p
£"P,(n)

~ b
£ 0"P (n)

V=[RI, [P.J5, - [Pn,
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otherwise V =1.

(3) Determine the value of y as follows:

l~logq(z) if @ =0 and za positive integer power of q,
y=ym
0 otherwise.

(4) Take V =n” NI equation (5.4) can be solved for U € F[n] then return

g, = % f,, otherwise return “no gm -hypergeometric solution of (5.1)
n
exists”. O
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