m-Hypergeometric Solutions of Anti-Difference and q-Anti-Difference Equations

Husam L. Saad

Department of Mathematics, College of Science, Basrah University, Basrah, Iraq.

Abstract

In this paper we consider the problem of finding m-hypergeometric solutions of anti-difference equations. We extend the greatest factorial factorization (GFF) of a polynomial, introduced by Paule (1995), to the m-greatest factorial factorization (m GFF). Equipped with the m GFF-concept, we present algebraically motivated approach to the problem. This approach requires only "gcd" operations but no factorization. Then, we solve the same problem for q-anti-difference equations.

Keywords: Gosper's algorithm, m-hypergeometric solution, m-greatest factorial factorization, q-Gosper algorithm, $q m$-hypergeometric solution, $q m$-greatest factorial factorization.

الحلل الهلبرجيومترية المعالالت ضد الفروقت q - ومعالدلات ضد اللفروقا

Rسلم لوقيسعد
جالمة البصرة، كلية العلوم، قم الرباضيلت
البصرة، العرف

الخلاصة

في هذا البحث نتلمل مسالة ايجاد الحلول الهايبرجيومترية -m لمعادلات ضد الفروقت. نوسع تحليل

 ولايظلب التحليل اله عوامل. فم نطل غس المسالة لمعادلات الفروقت - q

1. Introduction

Let m denotes a positive integer, \mathbb{N} be the set of natural numbers, K be the field of characteristic zero, $K(n)$ be the field of rational functions over $K, K[n]$ be the ring of polynomials over K, F denotes the transcendental extension of K by the indeterminate q, i.e., $F=K(q), E$ denotes the shift operator on $K[n]$, i.e., $(E p)(n)=p(n+1)$ for any $p \in K[n], \varepsilon$ denotes the q-shift operator on $F[n]$ and $F(n)$, i.e., $(\varepsilon u)(n)=u(q n)$ for any $u \in F[n]$ or $u \in F(n), \operatorname{deg}(p)$ denotes the polynomial degree (in n) of any $p \in K[n]$ or $p \in F[n], p \neq 0$. We define deg $(0)=-1$. We assume the result of any gcd (greatest common divisor) computation in $K[n]$ or $F[n]$ as being normalized to a monic polynomial p, i.e., the leading coefficient of p being 1 . Recall that a non-zero term t_{n} is called a hypergeometric term over K if there exist a rational function $r(n) \in K(n)$ such that

$$
\frac{t_{n+1}}{t_{n}}=r(n)
$$

Gosper's algorithm (Goper, 1978) (also see Graham et al., 1989, Koepf, 1998, Petkovšek et al., 1996) has been extensively studied and widely used to prove hypergeometric identities. Given a hypergeometric term t_{n}, Gosper's algorithm is a procedure to find a hypergeometric term z_{n} satisfying

$$
\begin{equation*}
z_{n+1}-z_{n}=t_{n} . \tag{1.1}
\end{equation*}
$$

if it exists, or confirm the nonexistence of any solution of (1.1). In Paule (1995), Paule introduced the GFF-concept. Equipped with the GFF-concept, he presented a new and algebraically motivated approach to Gosper's algorithm.

A non-zero term a_{n} is called an m-hypergeometric over K if there exist a rational function $w(n) \in K[n]$ such that

$$
\begin{equation*}
\frac{a_{n+m}}{a_{n}}=w(n) \tag{1.2}
\end{equation*}
$$

In Koepf (1995), Koepf extends Gosper's algorithm to find m-hypergeometric solutions h_{n} of

$$
\begin{equation*}
h_{n+m}-h_{n}=a_{n}, \tag{1.3}
\end{equation*}
$$

where a_{n} is a given m-hypergeometric term. In Petkovšek and Bruno (1993), Petkovšek and Bruno described an algorithm to find m-hypergeometric solutions of homogeneous linear recurrences with polynomial coefficients. Their algorithm reduces to algorithm Hyper (Petkovšek, 1992) when $m=1$.

A non-zero term b_{k} is called a q-hypergeometric over F if there exists a rational function $\sigma \in F\left(q^{k}\right)$ such that

$$
\frac{b_{k+1}}{b_{k}}=\sigma\left(q^{k}\right) .
$$

In Paule and Riese (1997), Paule and Riese introduced the q-greatest factorial factorization (q GFF) of polynomials, which is a q-analogue of the GFF-concept. Equipped with the q GFF, they presented a new approach to find q-hypergeometric solutions l_{k} of

$$
\begin{equation*}
l_{k+1}-l_{k}=b_{k}, \tag{1.4}
\end{equation*}
$$

where b_{k} is a given q-hypergeometric term. Paule-Riese's approach can be viewed as an q-analogue of Gosper's algorithm.

A non-zero term f_{k} is called a $q m$-hypergeometric over F if there exist a rational function $\rho \in F\left(q^{k}\right)$ such that

$$
\frac{f_{k+m}}{f_{k}}=\rho\left(q^{k}\right)
$$

Let us define the dispersion $\operatorname{dis}_{m}(a, b)$ of the polynomials $a(n), b(n) \in K[n]$ to be the greatest nonnegative integer k (if it exists) such that $a(n)$ and $b(n+m k)$ have a nontrivial common divisor, i.e.,

$$
\operatorname{dis}_{m}(a, b)=\max \{k \in \mathbb{N} \mid \operatorname{deg} \operatorname{gcd}(a(n), b(n+m k)) \geq 1\} .
$$

If k does not exist then we set $\operatorname{dis}_{m}(a, b)=-1$. Recall that the pair $\langle c, d\rangle, c, d \in K[n]$, is called the reduced form of $r \in K(n)$ if $r=c / d, d$ is monic, and $\operatorname{gcd}(c, d)=1$.

The contents of this paper are as follows: In Section 2, we give the Fundamental m GFF Lemma, which is an extension of the Fundamental Lemma given by Paule (1995). In Section 3, we extend Paule's approach to find m-hypergeometric solutions of anti-difference equations. In Section 4, we give the Fundamental qm GFF Lemma, which is an extension of the Fundamental q GFF Lemma given by Paule and Riese (1997). Finally, In Section 5, we extend Paule-Riese's approach to find $q m$ hypergeometric solutions of q-anti-difference equations.

2. m-Greatest Factorial Factorization

In this section we define the m GFF of a polynomial, which is an extension of the GFF-concept introduced by Paule.

2.1 Basic Definitions

Definition 2.1. For any monic polynomial $p \in K[n]$ and $i \in \mathbb{N}$, the i-th m-falling factorial $[p]_{m}^{i}$ of p is defined as

$$
[p]_{m}^{i}=p \cdot E^{-m} p \cdot E^{-2 m} p \cdot \ldots \cdot E^{(-i+1) m} p .
$$

For $i=0$, we let $[p]_{m}^{0}=1$.
Definition 2.2. We say that $\left\langle p_{1}, p_{2}, \ldots, p_{s}\right\rangle, p_{i} \in K[n]$, is an m GFF-form of a monic polynomial $p \in K[n]$ if the following conditions hold:

$$
\begin{aligned}
& \text { (} m \text { GFF1) } p=\left[p_{1}\right]_{m}^{\frac{1}{m}} \cdot\left[p_{2}\right]_{m}^{2} \cdots\left[p_{s}\right]_{m}^{s}, \\
& \text { (} m \text { GFF2) each } p_{i} \text { is monic and } s>0 \text { implies } \operatorname{deg}\left(p_{s}\right)>0 \text {, } \\
& \text { (} m \text { GFF3) } \operatorname{gcd}\left(\left[\mathrm{p}_{i}\right]_{m}^{i}, E^{m} p_{j}\right)=1 \text { for } 1 \leq i \leq j \leq s, \\
& \text { (} m \text { GFF4) } \operatorname{gcd}\left(\left[p_{i}\right]_{m}^{i}, E^{-j m} p_{j}\right)=1 \text { for } 1 \leq i \leq j \leq s .
\end{aligned}
$$

If $\left\langle p_{1}, p_{2}, \ldots, p_{s}\right\rangle$ is an m GFF-form of a monic $p \in K[n]$ we sometimes express this fact for short by $\operatorname{mFF}(p)=\left\langle p_{1}, p_{2}, \ldots, p_{s}\right\rangle$.

2.2 The Fundamental m GFF Lemma

In this section we give the Fundamental m GFF Lemma, which is an extension of the Fundamental Lemma given by Paule. The $\operatorname{gcd}\left(p, E^{m} p\right)$ for $p \in K[n]$ plays a basic role in finding m-hypergeometric solutions of anti-difference equation (1.3).

Lemma 2.1. ("Fundamental m GFF Lemma") Given a monic polynomial $p \in K[n]$ with m GFF-form $\left\langle p_{1}, p_{2}, \ldots, p_{s}\right\rangle$. Then

$$
\operatorname{gcd}\left(p, E^{m} p\right)=\left[p_{2}\right]_{m}^{1} \cdot\left[p_{3}\right]_{m}^{\frac{2}{m}} \cdots\left[p_{s}\right]_{m}^{\frac{s-1}{m}} .
$$

Proof. Proceeding by induction on s the case $s=0$ is trivial. For $s>0$,

$$
\begin{aligned}
\operatorname{gcd}\left(p, E^{m} p\right) & =\left[p_{s} \frac{s_{m}^{-1}}{m} \cdot \operatorname{gcd}\left(\left[p_{1}\right]_{m}^{\frac{1}{n}}\left[p_{s-1}\right]^{\frac{s-1}{m}} \cdot E^{(-s+1) m} p_{s}, E^{m}\left(\left[p_{1}\right]_{m}^{\frac{1}{m}} \ldots\left[p_{s-1}\right]_{m}^{s-1} \cdot p_{s}\right)\right) .\right. \\
& =\left[p_{s}\right]^{\frac{s-1}{m}} \cdot \operatorname{gcd}\left(\left[p_{1}\right]_{m}^{\frac{1}{m}} \ldots\left[p_{s-1} \frac{s-1}{m}, E^{m}\left(\left[p_{1}\right]_{m}^{\frac{1}{m}} \ldots\left[p_{s-1}\right]_{m}^{s-1}\right)\right) .\right.
\end{aligned}
$$

The first equality is obvious, the second is a consequence of m GFF3 and m GFF4 because for $i<s$ we have

$$
\operatorname{gcd}\left(\left[p_{i}\right]_{m}^{i}, E^{m} p_{s}\right)=\operatorname{gcd}\left(E^{(-s+1) m} p_{s}, E^{m}\left[p_{i}\right]_{m}^{i}\right)=E^{m} \operatorname{gcd}\left(E^{-s m} p_{s},\left[p_{i}\right]_{m}^{i}\right)=1
$$

together with $\operatorname{gcd}\left(E^{(-s+1) m} p_{s}, E^{m} p_{s}\right) \mid \operatorname{gcd}\left(\left[p_{s}\right]_{m}^{s}, E^{m} p_{s}\right)=1$. The rest of the proof follows from applying the induction hypothesis.

In the above lemma we see that from the m GFF-form of a polynomial p we can find the $m \operatorname{GFF}-$ form of $\operatorname{gcd}\left(p, E^{m} p\right)$.

3. m-Hypergeometric Solutions of Anti-Difference
 Equations

In this section we extend Paule approach to find m-hypergeometric solutions h_{n} of equation (1.3). Given an m-hypergeometric term a_{n} and suppose that there exists an m-hypergeometric term h_{n} satisfying equation (1.3), then by using (1.3) we find

$$
\frac{h_{n}}{a_{n}}=\frac{h_{n}}{h_{n+m}-h_{n}}=\frac{1}{\frac{h_{n+m}}{h_{n}}-1} .
$$

Let $y(n)=h_{n} / a_{n}$. It follows that $y(n)$ is a rational function of n. Let $\langle a, b\rangle$ be the reduced form of $w(n)=a_{n+m} / a_{n}$. Substituting $y(n) a_{n}$ for h_{n} in (1.3) to obtain

$$
\begin{equation*}
a(n) y(n+m)-b(n) y(n)=b(n) \text {. } \tag{3.1}
\end{equation*}
$$

This means, the problem of finding m-hypergeometric solution of (1.3) is equivalent to finding a rational solution $y(n)$ of (3.1). If a solution $y(n) \in K(n)$ of (3.1) with the reduced form $\langle u, v\rangle$ exists, assume we know v or a multiple $V \in K[n]$ of v. Then equation (3.1) can be written as

$$
\begin{equation*}
a(n) \cdot V(n) \cdot U(n+m)-b(n) \cdot V(n+m) \cdot U(n)=b(n) \cdot V(n) \cdot V(n+m), \tag{3.2}
\end{equation*}
$$

where $U(n)=u(n) \cdot V(n) / v(n)$ is unknown polynomial. Hence the problem reduces to finding a polynomial solution $U \in K[n]$ of equation (3.2). To solve (3.2) we try to find a suitable denominator polynomial V and then U can be computed as a polynomial solution of (3.2). Let

$$
v_{i}(n)=\frac{v(n+i)}{\operatorname{gcd}\left(v, E^{m} v\right)} \quad \text { for } i \in\{0, m\} .
$$

Then (3.1) is equivalent to

$$
\begin{equation*}
a(n) \cdot v_{0}(n) \cdot u(n+m)-b(n) \cdot v_{m}(n) \cdot u(n)=b(n) \cdot v_{0}(n) \cdot v_{m}(n) \cdot \operatorname{gcd}\left(v, E^{m} v\right) \tag{3.3}
\end{equation*}
$$

From this equation we immediately get that $v_{0}(n) \mid b(n)$ and that $v_{m}(n) \mid a(n)$. Let m GFF $(v)=\left\langle p_{1}, p_{2}, \ldots, p_{s}\right\rangle$, by using the m GFF-concept and the Fundamental m GFF Lemma we get that

$$
\begin{align*}
& \left.v_{0}=\frac{v}{\operatorname{gcd}\left(v, E^{m} v\right)}=p_{1} \cdot E^{-m} p_{2} \ldots E^{(-s+1) m} p_{s} \right\rvert\, b(n), \tag{3.4}\\
& \left.v_{m}=\frac{E^{m} v}{\operatorname{gcd}\left(v, E^{m} v\right)}=E^{m} p_{1} \cdot E^{m} p_{2} \ldots E^{m} p_{s} \right\rvert\, a(n), \tag{3.5}
\end{align*}
$$

This observation gives rise to a simple algorithm for computing a multiple $V=\left[P_{1}\right]_{m}^{\frac{1}{m}} \cdot\left[P_{2}\right]_{m}^{\frac{2}{m}} \cdots\left[P_{s}\right]_{m}^{s}$ of v.

- Straightforward conclusion

$$
p_{i} \mid \operatorname{gcd}\left(E^{-m} a, E^{(i-1) m} b\right) \quad \forall i \in\{1, \ldots, s\} .
$$

If $P_{i}=\operatorname{gcd}\left(E^{-m} a, E^{(i-1) m} b\right)$ then obviously $p_{i} \mid P_{i}$. Thus, we could take

$$
m \operatorname{GFF}(V)=\left\langle P_{1}, P_{2}, \ldots, P_{N}\right\rangle,
$$

where $N=\operatorname{dis}_{m}(a, b)=\max \left\{i \in \mathbb{N} \mid \operatorname{deg} \operatorname{gcd}\left(a, E^{i m} b\right) \geq 1\right\}$. If N is not defined then we set $V=1$.

- Refined conclusions

$$
p_{1} \mid \operatorname{gcd}\left(E^{-m} a, b\right)
$$

If $P_{1}=\operatorname{gcd}\left(E^{-m} a, b\right)$ then $p_{1} \mid P_{1}$ and

$$
p_{2} \left\lvert\, \operatorname{gcd}\left(E^{-m}\left(\frac{a}{E^{m}\left(P_{1}\right)}\right), E^{m}\left(\frac{b}{P_{1}}\right)\right) .\right.
$$

If $P_{2}=\operatorname{gcd}\left(E^{-m}\left(\frac{a}{E^{m}\left(P_{1}\right)}\right), E^{m}\left(\frac{b}{P_{1}}\right)\right)$, then $p_{12} \mid P_{2}$ and so on until we arrive at a P_{N} and we may again take $m \operatorname{GFF}(V)=\left\langle P_{1}, P_{2}, \ldots, P_{N}\right\rangle$.

The algorithm that we have just derived for (1.3) can be written, by using the "redefined conclusions", as follows:
Algorithm 3.1.

INPUT : $w(n) \in K(n)$ such that $a_{n+m} / a_{n}=w(n)$ for all $n \in \mathbb{N}$.
OUTPUT: an m-hypergeometric solution h_{n} of (1.3) if it exists, otherwise "no m-hypergeomet-ric solution of (1.3) exists".
(1) Decompose $w(n)$ into the reduced form $\langle a, b\rangle$.
(2) Compute $N=\operatorname{dis}_{m}(a, b)=\max \left\{i \in \mathbb{N} \mid \operatorname{deg} \operatorname{gcd}\left(a, E^{i m} b\right) \geq 1\right\}$.

If $N>0$ then compute for j from 1 to N

$$
\begin{aligned}
& \qquad P_{j}(n)=\operatorname{gcd}\left(E^{-m} a, E^{(j-1) m} b\right) \\
& a=\frac{a}{E^{m} P_{j}(n)} \\
& b=\frac{b}{E^{-(j-1) m} P_{j}(n)} \\
& m G F F(V)=\left\langle P_{1}, P_{2}, \ldots, P_{N}\right\rangle \\
& \text { otherwise } V=1 .
\end{aligned}
$$

(3) If equation (3.2) can be solved for $U \in K[n]$ then return $h_{n}=\frac{U(n)}{V(n)} a_{n}$, otherwise return "no m-hypergeometric solution of (1.3) exists".

4. q - m-Greatest Factorial Factorization

In this section we define the " q - m-Greatest Factorial Factorization" ($q m$ GFF) of a polynomial which is an extension of the q GFF-concept introduced by Paule and Riese. Also, it is a q-analogue of the m GFF-concept, defined with respect to the q shift operator ε instead of the shift operator E as for m GFF. In Sections 4 and 5, we will use n as an abbreviation for q^{k}.

Let us define the dispersion $\operatorname{dis}_{m}(a(n), b(n))$ of the q-monic polynomials $a(n), b(n) \in F[n]$ is the greatest nonnegative integer i (if it exists) such that $a(n)$ and $b\left(q^{m i} n\right)$ have a nontrivial common divisor, i.e.,

$$
\operatorname{dis}_{m}(a, b)=\max \left\{i \in \mathbb{N} \mid \operatorname{deg} \operatorname{gcd}\left(a(n), b\left(q^{m i} n\right)\right) \geq 1\right\} .
$$

A polynomial $p \in F[n]$ is said to be q-monic if $p(0)=1$. Any polynomial $p \in F[n]$ has a unique factorization, the q-monic decomposition, in the form

$$
p=z \cdot n^{\alpha} \cdot \hat{p},
$$

where $z \in F, \alpha \in \mathbb{N}$, and $\hat{p} \in F[n] q$-monic. We will write gcd_{q} instead of "gcd", indicating that the gcd_{q} of two q-monic polynomials is understood to be q-monic.

More generally, if $p_{1}=z_{1} \cdot n^{\alpha_{1}} \cdot \hat{p}_{1}$ and $p_{2}=z_{2} \cdot n^{\alpha_{2}} \cdot \hat{p}_{2}$ are q-monic decompositions of $p_{1}, p_{2} \in F[n]$, we define

$$
\operatorname{gcd}_{q}\left(p_{1}, p_{2}\right)=\operatorname{gcd}\left(n^{\alpha_{1}}, n^{\alpha_{2}}\right) \cdot \operatorname{gcd}_{q}\left(\hat{p}_{1}, \hat{p}_{2}\right)
$$

4.1 Basic Definitions

Definition 4.1. For any q-monic polynomial $p \in F[n]$ and $i \in \mathbb{N}$, the i-th m-falling q-factorial $[p]_{m_{q}}^{i}$ of p is defined as

$$
[p]_{m_{q}}^{i}=p \cdot \varepsilon^{-m} p \cdot \varepsilon^{-2 m} p \cdot \ldots \cdot \varepsilon^{(-i+1) m} p
$$

For $i=0$, we let $[p]_{m_{q}}^{0}=1$.
Definition 4.2. We say that $\left\langle p_{1}, p_{2}, \ldots, p_{s}\right\rangle, p_{i} \in F[n]$, is an $q m$ GFF-form of a q monic polynomial $p \in F[n]$ if the following conditions hold:
(qm GFF1) $p=\left[p_{1}\right]_{m_{q}}^{1} \cdot\left[p_{2}\right]_{m_{q}}^{\frac{2}{}} \cdots\left[p_{s}\right]_{m_{q}}^{s}$,
(q m GFF2) each p_{i} is q-monic and $s>0$ implies $\operatorname{deg}\left(p_{s}\right)>0$,
($q m$ GFF3) $\operatorname{gcd}_{q}\left(\left[\mathrm{p}_{i}\right]_{m_{q}}^{i}, \varepsilon^{m} p_{j}\right)=1$ for $1 \leq i \leq j \leq s$,
(q m GFF4) $\operatorname{gcd}_{q}\left(\left[p_{i}\right]_{m_{q}}^{i}, \varepsilon^{-j m} p_{j}\right)=1$ for $1 \leq i \leq j \leq s$.

If $\left\langle p_{1}, p_{2}, \ldots, p_{s}\right\rangle$ is the $q m$ GFF-form of a q-monic $p \in F[n]$ we also denote this fact for short by $q m \operatorname{GFF}(p)=\left\langle p_{1}, p_{2}, \ldots, p_{s}\right\rangle$.

4.2 The Fundamental q m GFF Lemma

In this section we give the Fundamental $q m$ GFF Lemma which is an extension of the Fundamental q GFF Lemma given by Paule and Riese. In finding m-hypergeometric solutions of anti-difference equations (i.e., $q=1$) the $\operatorname{gcd}\left(p, E^{m} p\right)$ for $p \in K[n]$ plays a basic role. The same is true for $q m$-hypergeometric solutions of q-antidifference equations with respect to the q-shift operator ε instead of E.

Lemma 4.1. ("Fundamental $q m$ GFF Lemma") Given a q-monic polynomial $p \in F[n]$ with $q m G F F$-form $\left\langle p_{1}, p_{2}, \ldots, p_{s}\right\rangle$. Then

$$
\operatorname{gcd}_{q}\left(p, \varepsilon^{m} p\right)=\left[p_{2}\right]_{m_{q}}^{\frac{1}{2}} \cdot\left[p_{3}\right]_{m_{q}}^{\frac{2}{q}} \cdots\left[p_{s}\right]_{m_{q}}^{\frac{s-1}{m_{2}}} .
$$

Proof. Proceeding by induction on s the case $s=0$ is trivial. For $s>0$,

$$
\begin{aligned}
\operatorname{gcd}_{q}\left(p, \varepsilon^{m} p\right) & =\left[p_{s}\right]^{\frac{s-1}{m_{q}}} \cdot \operatorname{gcd}_{q}\left(\left[p_{1}\right]_{m_{q}}^{1} \ldots\left[p_{s-1}\right]_{m_{q}}^{\frac{s-1}{m_{q}}} \cdot \varepsilon^{(-s+1) m} p_{s}, \varepsilon^{m}\left(\left[p_{1}\right]_{m_{q}}^{1} \cdots\left[p_{s-1}\right]_{m_{q}}^{s-1} \cdot p_{s}\right)\right) . \\
& =\left[p_{s}\right]_{m_{q}-1}^{s-1} \cdot \operatorname{gcd}_{q}\left(\left[p_{1}\right]_{m_{q}}^{\frac{1}{m_{q}}} \ldots\left[p_{s-1}\right]_{m_{q}}^{s-1}, \varepsilon^{m}\left(\left[p_{1}\right]_{m_{q}}^{\frac{1}{m_{2}}} \cdots\left[p_{s-1}\right]_{m_{q}}^{s-1}\right)\right) .
\end{aligned}
$$

The first equality is obvious, the second is a consequence of qm GFF3 and qm GFF4 because for $i<s$ we have

$$
\operatorname{gcd}_{q}\left(\left[p_{i}\right]_{m_{q}}^{i}, \varepsilon^{m} p_{s}\right)=\operatorname{gcd}_{q}\left(\varepsilon^{(-s+1) m} p_{s}, \varepsilon^{m}\left[p_{i}\right]_{m_{q}}^{i}\right)=\varepsilon^{m} \operatorname{gcd}_{q}\left(\varepsilon^{-s m} p_{s},\left[p_{i}\right]_{m_{q}}^{i}\right)=1 .
$$

together with $\operatorname{gcd}_{q}\left(\varepsilon^{(-s+1) m} p_{s}, \varepsilon^{m} p_{s}\right) \mid \operatorname{gcd}_{q}\left(\left[p_{s}\right]_{m_{q}}^{s}, \varepsilon^{m} p_{s}\right)=1$. The rest of the proof follows from applying the induction hypothesis.

In the above lemma we see that from the $q m$ GFF-form of a q-monic polynomial p one directly can extract the $q m$ GFF-form of $\operatorname{gcd}_{q}\left(p, \varepsilon^{m} p\right)$.

5. qm -Hypergeometric Solutions of q-Anti-Difference Equations

In this section we extend Paule-Riese's approach to find $q m$-hypergeometric solutions g_{k} of the q-anti-difference equation

$$
\begin{equation*}
g_{k+m}-g_{k}=f_{k}, \tag{5.1}
\end{equation*}
$$

where f_{k} is a given a $q m$-hypergeometric term. Given a $q m$-hypergeometric term f_{k} and suppose that there exists a $q m$-hypergeometric term f_{k} satisfying equation (5.1), then by using (5.1) we find

$$
\frac{g_{k}}{f_{k}}=\frac{g_{k}}{g_{k+m}-g_{k}}=\frac{1}{\frac{g_{k+m}}{g_{k}}-1}
$$

Let $\tau=g_{k} / f_{k}$. It follows that τ is a rational function over F. Substituting $\tau \cdot f_{k}$ for g_{k} in (5.1) to obtain

$$
\begin{equation*}
\rho \cdot \varepsilon^{m} \tau-\tau=1 \tag{5.2}
\end{equation*}
$$

where $\rho=f_{k+m} / f_{k} \in F(n)$ is a rational function. Let $\rho=z \cdot n^{\alpha} \cdot a / b$ with $z \in F, \alpha$ integer, and $a, b \in F[n]$ relatively prime and q-monic. For any integer α we define $\alpha_{+}=\max (\alpha, 0)$ and $\alpha_{-}=\max (-\alpha, 0)$, thus equation (5.2) is equivalent to

$$
\begin{equation*}
z \cdot n^{\alpha_{+}} \cdot a \cdot \varepsilon^{m} \tau-n^{\alpha_{-}} \cdot b \cdot \tau=n^{\alpha_{-}} \cdot b . \tag{5.3}
\end{equation*}
$$

This means the problem of finding a $q m$-hypergeometric solutions of (5.1) is equivalent to finding rational solutions τ of (5.3). Let $\tau=u / v$ where $u, v \in F[n]$ be two unknown relatively prime polynomials with $v=n^{\beta} \cdot \hat{v}$ the q-monic decomposition of v. If a solution τ of (5.3) exists, assume we know v or a multiple $V \in F[n]$ of v. Then equation (5.3) can be written as

$$
\begin{equation*}
z \cdot n^{\alpha_{+}} \cdot a \cdot V \cdot \varepsilon^{m} U-n^{\alpha_{-}} \cdot b \cdot \varepsilon^{m} V \cdot U=n^{\alpha_{-}} \cdot b \cdot V \cdot \varepsilon^{m} V . \tag{5.4}
\end{equation*}
$$

where $U(n)=u(n) \cdot V(n) / v(n)$ is unknown polynomial. Hence the problem reduces to finding a polynomial solution $U \in F[n]$ of equation (5.4). To solve (5.4) we try to find a suitable denominator polynomial V and then U can be computed as a polynomial solution of (5.4). Let

$$
v_{i}=\frac{\varepsilon^{i} v}{\operatorname{gcd}_{q}\left(v, \varepsilon^{m} v\right)} \quad \text { for } i \in\{0, m\}
$$

Then (5.3) is equivalent to

$$
\begin{equation*}
z \cdot n^{\alpha_{+}} a \cdot v_{0} \cdot \varepsilon^{m} u-n^{\alpha_{-}} \cdot b \cdot v_{m} \cdot u=n^{\alpha_{-}} \cdot b \cdot v_{0} \cdot v_{m} \cdot \operatorname{gcd}_{q}\left(v, \varepsilon^{m} v\right) \tag{5.5}
\end{equation*}
$$

From this equation we immediately get that $v_{0} \mid b$ and that $v_{m} \mid a$. Let $q m \operatorname{GFF}(\hat{v})=\left\langle p_{1}, p_{2}, \ldots, p_{s}\right\rangle$, by using the $q m$ GFF-concept and the Fundamental $q m$ GFF Lemma we get that

$$
\begin{equation*}
\left.v_{0}=\frac{v}{\operatorname{gcd}_{q}\left(v, \varepsilon^{m} v\right)}=\frac{\hat{v}}{\operatorname{gcd}_{q}\left(\hat{v}, \varepsilon^{m} \hat{v}\right)}=p_{1} \cdot \varepsilon^{-m} p_{2} \ldots \varepsilon^{(-s+1) m} p_{s} \right\rvert\, b, \tag{5.6}
\end{equation*}
$$

$$
\begin{equation*}
\left.v_{m}=\frac{\varepsilon^{m} v}{\operatorname{gcd}_{q}\left(v, \varepsilon^{m} v\right)}=\frac{q^{m \beta} \cdot \varepsilon^{m} \hat{v}}{\operatorname{gcd}_{q}\left(\hat{v}, \varepsilon^{m} \hat{v}\right)}=q^{m \beta} \cdot \varepsilon^{m} p_{1} \cdot \varepsilon^{m} p_{2} \ldots \varepsilon^{m} p_{s} \right\rvert\, a, \tag{5.7}
\end{equation*}
$$

This observation give rise to a simple algorithm for computing a multiple $\hat{V}=\left[P_{1}\right]_{m_{q}}^{1} \cdot\left[P_{2}\right]_{m_{q}}^{2} \cdots\left[P_{s}\right]_{m_{q}}^{s}$ of \hat{v}.

- Straightforward conclusion

$$
p_{i} \mid \operatorname{gcd}_{q}\left(\varepsilon^{-m} a, \varepsilon^{(i-1) m} b\right) \quad \forall i \in\{1, \ldots, s\} .
$$

If $P_{i}=\operatorname{gcd}_{q}\left(\varepsilon^{-m} a, \varepsilon^{(i-1) m} b\right)$ then obviously $p_{i} \mid P_{i}$. Thus, we could take

$$
\hat{V}=\left[P_{1}\right]_{m_{q}}^{1} \cdot\left[P_{2}\right]_{m_{q}}^{2} \cdots\left[P_{N}\right]_{m_{q}}^{\frac{N}{n}},
$$

where $N=\operatorname{dis}_{m}(a, b)=\max \left\{i \in \mathbb{N} \mid \operatorname{deg} \operatorname{gcd}_{q}\left(a, \varepsilon^{i m} b\right) \geq 1\right\}$. If N is not defined then we set $\hat{V}=1$.

- Refined conclusions

$$
p_{1} \mid \operatorname{gcd}_{q}\left(\varepsilon^{-m} a, b\right) .
$$

if we take $P_{1}=\operatorname{gcd}_{q}\left(\varepsilon^{-m} a, b\right)$ then $p_{1} \mid P_{1}$ and

$$
p_{2} \left\lvert\, \operatorname{gcd}_{q}\left(\varepsilon^{-m}\left(\frac{a}{\varepsilon^{m}\left(P_{1}\right)}\right), \varepsilon^{m}\left(\frac{b}{P_{1}}\right)\right) .\right.
$$

If we take $P_{2}=\operatorname{gcd}_{q}\left(\varepsilon^{-m}\left(\frac{a}{\varepsilon^{m}\left(P_{1}\right)}\right), \varepsilon^{m}\left(\frac{b}{P_{1}}\right)\right)$, then $p_{2} \mid P_{2}$ and so on until we arrive at a P_{N} and we may again take $\hat{V}=\left[P_{1}\right]_{m_{q}}^{1} \cdot\left[P_{2}\right]_{m_{q}}^{2} \cdots\left[P_{N}\right]_{m_{q}}^{N}$.

With \hat{V} in hand, all what is left for solving (5.4), and thus finding the a $q m$ hypergeometric solution of equation (5.1), is to determine an appropriate value of γ such that

$$
v(n)=n^{\beta} \cdot \hat{v}(n) \mid V(n)=n^{\gamma} \cdot \hat{V}(n)
$$

For that we will follow the approach given by Paule and Riese (1997). Consider equation (5.5): (i) Assume that $\alpha \neq 0$ then either $\alpha_{-} \neq 0$ or $\alpha_{+} \neq 0$. In the first case we have $\alpha_{+}=0$ and $n^{\alpha_{-}} \mid u$, hence β must be zero because of $\operatorname{gcd}_{q}(u, v)=1$. This
means we can choose $\gamma=0$. In the second case we have $\alpha_{-}=0$ and $n^{\min \left(\alpha_{+}, \beta\right)} \mid u$, because of $\operatorname{gcd}_{q}\left(v, \varepsilon^{m} v\right)=n^{\beta} \cdot \operatorname{gcd}_{q}\left(\hat{v}, \varepsilon^{m} \hat{v}\right)$. Again β must be zero, and again we can choose $\gamma=0$. (ii) Assume that $\alpha=0$. In this case equation (5.5) evaluated at $n=0$ turns into

$$
\left(z-q^{\beta m}\right) u(0)=q^{\beta m} \cdot \delta_{0, \beta},
$$

where $\delta_{0, \beta}$ denotes the Kronecker symbol. This means if $\beta>0$ we obtain, observing that $u(0) \neq 0$ in this case, as a condition for β that $z=q^{\beta m}$. Hence in case $\alpha=0$, we choose $\gamma=\frac{1}{m} \cdot \log _{q}(z)$ if z is a positive integer power of q, or $\gamma=0$ otherwise.

The algorithm that we have just derived for (5.1) can be written, by using the "redefined conclusions", as follows:

Algorithm 5.1.

INPUT : $\rho \in F(n)$ such that $f_{k+m} / f_{k}=\rho\left(q^{k}\right)$ for all $n \in \mathbb{N}$.
OUTPUT: a qm -hypergeometric solution g_{k} of (5.1) if it exists, otherwise "no qm hypergeometric solution g_{k} of (5.1) exists".
(1) Decompose ρ into the form $\rho=z \cdot n^{\alpha} \cdot a / b$ such that $z \in F, \alpha$ integer, and $a, b \in F[n]$ relatively prime and q-monic.
(2) Compute $N=\operatorname{dis}_{m}(a, b)=\max \left\{i \in \mathbb{N} \mid \operatorname{deg} \operatorname{gcd} q\left(a, \varepsilon^{i m} b\right) \geq 1\right\}$.

If $N>0$ then compute for j from 1 to N

$$
\begin{gathered}
P_{j}(n)=\operatorname{gcd}_{q}\left(\varepsilon^{-m} a, \varepsilon^{(j-1) m} b\right) \\
a=\frac{a}{\varepsilon^{m} P_{j}(n)} \\
b=\frac{b}{\varepsilon^{-(j-1) m} P_{j}(n)} \\
\left.\hat{V}=\left[P_{1}\right]_{m_{q}}^{1} \cdot\left[P_{2}\right]_{m_{q}}^{2} \cdots\left[P_{N}\right]\right]_{m_{q}}^{\frac{N}{q}}
\end{gathered}
$$

otherwise $\hat{V}=1$.
(3) Determine the value of γ as follows:
$\gamma= \begin{cases}\frac{1}{m} \cdot \log _{q}(z) & \text { if } \alpha=0 \text { and } z \text { a positive integer power of } q, \\ 0 & \text { otherwise. }\end{cases}$
(4) Take $V=n^{\gamma} \cdot \hat{V}$. If equation (5.4) can be solved for $U \in F[n]$ then return $g_{k}=\frac{U(n)}{V(n)} f_{k}$, otherwise return "no $q m$-hypergeometric solution of (5.1) exists".

References

[1] Gosper, R.W. Jr. (1978). Decision procedure for infinite hypergeometric summation, Proc. Natl. Acad. Sci. USA, 75, 40-42.
[2] Graham, R.L., Knuth, D.E. and Patashnik, O. (1989). Concrete Mathematics -- A Foundation for Computer Science, Reading: Adision-Weseley.
[3] Koepf, W. (1995). Algorithms for m-fold hypergeometric summation, J. Symbolic Computation, 20, 399-417.
[4] Koepf, W. (1998). Hypergeometric Summation, Vieweg, Braunschweig/Wiesbaden.
[5] Paule, P. (1995). Greatest factorial factorization and symbolic summation, J. Symbolic Computation, 20, 235-268.
[6] Paule, P. and Riese, A. (1997). A Mathematica q-analogue of Zeilberger's algorithm based on an algebraically motivated approach to q-hypergeometric telescoping. In: Ismail, M.E.H., Masson, D.R., Rahman, M. (Eds.), Special Functions, q-Series and Related Topics. Fields Inst. Commun., 14, American Mathematical Society, Providence, RI, 179-210.
[7] Petkovšek, M. (1992). Hypergeometric solutions of linear recurrences with polynomial coefficients, J. Symbolic Computation, 14, 243-264.
[8] Petkovšek, M. and Bruno, S. (1993). Finding all hypergeometric solutions of linear differential equations, Proc. ISSAC'93, ACM Press, 27-33.
[9] Petkovšek, M., Wilf, H.S. and Zeilberger, D. (1996). A=B. A. K. Peters.

